Abstract
Topological exciton-polaritons are a burgeoning class of topological photonic systems distinguished by their hybrid nature as part-light, part-matter quasiparticles. Their further control over novel valley degree of freedom (DOF) has offered considerable potential for developing active topological optical devices towards information processing. Here, employing a two-dimensional (2D) valley-Hall perovskite lattice, we report the experimental observation of valley-polarized topological exciton-polaritons and their valley-dependent propagations at room temperature. The 2D valley-Hall perovskite lattice consists of two mutually inverted honeycomb lattices with broken inversion symmetry. By measuring their band structure with angle-resolved photoluminescence spectra, we experimentally verify the existence of valley-polarized polaritonic topological kink states with a large gap opening of ~ 9 meV in the bearded interface at room temperature. Moreover, these valley-polarized states exhibit counter-propagating behaviors under a resonant excitation at room temperature. Our results not only expand the landscape of realizing topological exciton-polaritons, but also pave the way for the development of topological valleytronic devices employing exciton-polaritons with valley DOF at room temperature.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have