Abstract

A new possibility to expand the energy region of diffraction processes based on the interaction of relativistic charged particles with crystalline structures is presented. Diffracted photons related to parametric X-ray radiation produced by relativistic electrons are detected below the low energy threshold for the X-ray diffraction mechanism in crystalline structures for the first time. The measurements were performed during the interaction of 7 MeV electrons with a textured polycrystalline tungsten foil and a highly oriented pyrolytic graphite crystal. The experiment results are in good agreement with a developed model based on the PXR kinematical theory. The developed experimental approach can be applied to separate the contributions of real and virtual photons to the total diffracted radiation generated during the interaction of relativistic charged particles with crystalline targets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.