Abstract

A detailed experimental study of the magnetoelectric response of planar bi- and symmetric trilayer composite structures to magnetic field pulses is reported. The structures consist of layers of commercially available piezoelectric (lead zirconate titanate) and magnetostrictive (permendur or nickel) materials. The magnetic-field pulses have the form of a half-wave sine function with duration of 450 μs and amplitude from 500 Oe up to 38 kOe. The measurement method is explained and the measured time dependence of the resulting voltage is presented. The most interesting case, when pulse amplitudes are sufficiently large (~ 1-10 kOe) and various types of acoustic oscillation with frequencies much larger than the reciprocal pulse length are excited in the structures, is considered. The dependencies of the magnetoelectric voltage coefficient on the excitation frequency and the applied magnetic field are calculated. By digital signal processing the results are compared with those obtained by the method of harmonic field modulation (HFM). The findings are of interest for developing magnetoelectric sensors for pulsed magnetic fields as well as for rapid characterization of magnetoelectric composite structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.