Abstract
Einstein-Podolsky-Rosen (EPR) steering is a type of characteristic nonlocal correlation and provides an important resource in quantum information tasks, especially in view of its asymmetric property. Although plenty of works on EPR steering have been reported, the study of non-Markovian evolution of EPR steering, in which the interactions between the quantum system and surrounding environment are taken into consideration, still lacks intuitive experimental evidence. Here, we experimentally observe the non-Markovian evolution of EPR steering including its sudden death and revival processes, during which the degree of memory effect plays a key role in the recovery of steering. Additionally, a strict unsteerable feature is sufficiently verified during the non-Markovian evolution within multisetting measurements. This Letter, revealing the whole evolution of EPR steering under the non-Markovian process, provides incisive insight into the applications of EPR steering in quantum open systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.