Abstract

The γ phase of the erbium–hydrogen system is a hexagonal trihydride that is not predicted to be stable at room temperature without an overpressure of hydrogen gas. Herein, we report the creation of both, a thin film and powder of erbium trihydride that is metastable at ambient conditions. The presence of the hexagonal γ phase was determined by X-ray diffraction (XRD). The ratio of the total moles of hydrogen isotopes (hydrogen and deuterium) to moles of erbium, (H + D):Er, have been confirmed by elastic recoil detection (ERD)/Rutherford backscattering spectroscopy (RBS). Auger electron spectroscopy (AES) depth profiles and X-ray photoelectron spectroscopy (XPS) revealed the presence of an oxide layer that may account for the metastable behavior of the thin film.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.