Abstract

Multilayer structures for application in microelectronics are becoming increasingly complex. A sputter deposited multilayer structure composed of chromium, nickel and silicon layers with a total thickness of 310 nm on a smooth silicon substrate was characterized by transmission electron microscopy (TEM) and by Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) depth profiling. AES depth profiles of the Ni/Cr/Si multilayers were obtained with Ar + ion bombardment at various angles of incidence using stationary and rotated samples. In some cases a strong influence of semiconductor structure on the experimentally obtained metal-metal and metal-semiconductor interface widths was observed. Owing to ion beam induced Si(LVV) Auger electrons in the crater wall of the Ni/Cr/Si sample, a distortional influence on depth resolution during simultaneous AES analysis and ion sputtering was found. Silicide formation during sputtering at the silicon-metal interfaces was confirmed by XPS. The measured compositional depth profiles are explained with respect to the influence of polycrystalline metallic and amorphous semiconductor structures; the effects of ion beam induced topography, atomic mixing and silicide formation are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.