Abstract

IN order to directly observe low-mode implosion nonuniformities, especially of l equals 1, which prevents stable formation of a hot spark in the compressed core plasma at the final stage of the implosion, a series of direct-drive implosion experiments has been performed at the Gekko-XII glass laser facility by using gas-filled plastic- shell targets. Partially coherent light (PCL) was used as a drive laser to suppress middle- to higher-modes of the irradiation nonuniformity down to approximately 1 percent. A clear shift from the center of the chamber and a slight crosswise structure were seen in the time- and space- resolved shape of the shell in the accelerating phase with an x-ray framing camera and absorbed laser intensity were also estimated by using a rocket equation. In order to confirm the property of these results, separate experiments under similar laser conditions were performed by using Au- coated sapphire spheres as surrogate target. The x-ray intensity distribution on the circumference of the target in the XFCs image, which is strongly dependent on the drive nonuniformity in the accelerating shell resulted from the l equals 1 drive nonuniformity. In our experiments, the l equals 1 drive nonuniformity due to some reproducible factors was found to be of the order of approximately 10-20 percent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call