Abstract
We report on the observation of spatially asymmetric turbulent structures with a long radial correlation length in the core of high-collisionality H-mode plasmas on DIII-D tokamak. These turbulent structures develop from shorter wavelength turbulence and have a radially elongated structure. The envelope of turbulence spans a broad radial range in the mid-radius region, leading to streamer-like transport events. The underlying turbulence is featured by intermittency, long-term memory effect, and the characteristic spectrum of self-organized criticality. The amplitude and the radial scale increase substantially when the shearing rate of the mean flow is reduced below the turbulent scattering rate. The enhanced long-radial-range-correlated (LRRC) transport events are accompanied by apparent degradation of normalized energy confinement time. The emergence of such LRRC transport events may serve as a candidate explanation for the degrading nature of H-mode core plasma confinement at high collisionality on DIII-D tokamak.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.