Abstract

AbstractDue to the wave‐particle duality of high energy electron beam, RHEED describes a thin film surface through the interaction of reciprocal lattice rod (RLR) of the film. The RLR spacing of the crystal has been computed using RHEED streak spacing on a fluorescent screen. Present evolution study of RLR spacing has been performed for AlGaN/InGaN heterostructure on thick GaN buffer layer during plasma‐assisted molecular beam epitaxy. Effect of composition, strain and temperature on the crystal has been identified as the function of lattice spacing during the growth. The calibrated reflectivity of LED signal has also been employed to map the thickness of different growing epilayers. RLR spacing decreases for interlayer GaN as compared to AlN. Initially, the RLR spacing of GaN buffer decreases more as compared to interlayer GaN owing to its increased growth temperature after the interlayer AlN. The RLR spacing of GaN again gradually increases with decrement of growth temperature up to the InGaN channel layer. The InGaN RLR spacing decreases again which attributes to the relaxation of InGaN on GaN. Additionally, AlGaN reveals strained state to InGaN in combination with effect of high growth temperature. The phenomena result in additional decrement of lattice distance in reciprocal space. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.