Abstract
A new lateral resonant tunneling field-effect transistor (LARTFET) has been fabricated using molecular beam epitaxy and ultrahigh-resolution electron beam lithography. The LARTFET has two 80-nm-long gate electrodes separated by 100 nm. The dual gates create double potential barriers in the channel and a quantum well in between. Conductance oscillations are observed, which, for the first time, indicate electron resonant tunneling through the energy states in a lateral double-barrier quantum well formed electrostatically. Furthermore, after illumination, two additional negative transconductance peaks are observed. These additional peaks may be related to electron resonant tunneling through the donor-related deep levels in silicon-doped Al0.35Ga0.65As .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.