Abstract

We have observed weak localization induced by disorder in thin films of Gd doped ZnO (Gd:ZnO) deposited by pulsed laser deposition (PLD). Disorder parameter (Kfl) of all the Gd:ZnO thin films was found to be greater than 1, which indicates that thin films of Gd:ZnO in this study are in metallic side of metal-insulator transition. However, temperature dependent resistivity studies of all the Gd:ZnO thin films exhibits negative temperature coefficient of resistance (TCR) showing semiconductor like nature at low temperatures. This anomaly in temperature dependent resistivity behaviour has been attributed to the dominant presence of weak localization. Magnetoresistance measurements confirms the dominant influence of weak localization in the conducting mechanism of Gd:ZnO films. Phase coherent length was found to be varied with the concentration of Gd and reports the highest value at ~360 nm for Gd:ZnO thin film with 1 at.% of Gd concentration. .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.