Abstract

We discuss the evolution of the quantum state of an ensemble of atoms that are coupled via a single propagating optical mode. We theoretically show that the quantum state of N atoms, which are initially prepared in the timed Dicke state, in the single excitation regime evolves through all the N-1 states that are subradiant with respect to the propagating mode. We predict this process to occur for any atom number and any atom-light coupling strength. These findings are supported by measurements performed with cold cesium atoms coupled to the evanescent field of an optical nanofiber. We experimentally observe the evolution of the state of the ensemble passing through the first two subradiant states, leading to sudden, temporary switch-offs of the optical power emitted into the nanofiber. Our results contribute to the fundamental understanding of collective atom-light interaction and apply to all physical systems, whose description involves timed Dicke states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.