Abstract

Bulk liquid water is a strong absorber in the terahertz (THz) frequency range, due to which liquid water has historically been sworn off as a source for THz radiation. Here, we experimentally demonstrate the generation of broadband THz waves from liquid water excited by femtosecond laser pulses. Our measurements reveal the critical dependence of the THz field upon the relative position between the water film and the focal point of the laser beam. The THz radiation from liquid water shows distinct characteristics when compared with the THz radiation from air plasmas with single color optical excitation. First, the THz field is maximized with the laser beam of longer pulse durations. In addition, the p-polarized component of the emitted THz waves will be influenced by the polarization of the optical excitation beam. It is also shown that the energy of the THz radiation is linearly dependent on the excitation pulse energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.