Abstract
Stable laser resonators support three fundamental families of transverse modes: the Hermite, Laguerre, and Ince Gaussian modes. These modes are crucial for understanding complex resonators, beam propagation, and structured light. We experimentally observe a new family of fundamental laser modes in stable resonators: Boyer-Wolf Gaussian modes. By studying the isomorphism between laser cavities and quadratic Hamiltonians, we design a laser resonator equivalent to a quantum two-dimensional anisotropic harmonic oscillator with a 2:1 frequency ratio. The generated Boyer-Wolf Gaussian modes exhibit a parabolic structure and show remarkable agreement with our theoretical predictions. These modes are also eigenmodes of a 2:1 anisotropic gradient refractive index medium, suggesting their presence in any physical system with a 2:1 anisotropic quadratic potential. We identify a transition connecting Boyer-Wolf Gaussian modes to Weber nondiffractive parabolic beams. These new modes are foundational for structured light, and open exciting possibilities for applications in laser micromachining, particle micromanipulation, and optical communications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.