Abstract

We report an experiment that uses a superfluid helium quantum interference device to probe the initial onset of the motion of a single vortex line driven by axial flow in a macroscopic channel. When the superfluid velocity reaches a temperature independent critical value (v{sub c}{approx}1 mm/s) periodic 2{pi} phase slippage occurs with a frequency of the order of a few Hz. As the axial flow velocity increases, the frequency increases, possibly stepwise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.