Abstract

Metal-organic framework (MOF) composite materials containing ionic liquids (ILs) have been proposed for a range of potential applications, including gas separation, ion conduction, and hybrid glass formation. Here, an order transition in an IL@MOF composite is discovered using CuBTC (copper benzene-1,3,5-tricarboxylate) and [EMIM][TFSI] (1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide). This transition - absent for the bare MOF or IL - provides an extended super-cooling range and latent heat at a capacity similar to that of soft paraffins, in the temperature range of ≈220°C. Structural analysis and in situ monitoring indicate an electrostatic interaction between the IL molecules and the Cu paddle-wheels, leading to a decrease in pore symmetry at low temperature. These interactions are reversibly released above the transition temperature, which reflects in a volume expansion of the MOF-IL composite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call