Abstract

Quantum gases of light, such as photon or polariton condensates in optical microcavities, are collective quantum systems enabling a tailoring of dissipation from, for example, cavity loss. This characteristic makes them a tool to study dissipative phases, an emerging subject in quantum many-body physics. We experimentally demonstrate a non-Hermitian phase transition of a photon Bose-Einstein condensate to a dissipative phase characterized by a biexponential decay of the condensate's second-order coherence. The phase transition occurs because of the emergence of an exceptional point in the quantum gas. Although Bose-Einstein condensation is usually connected to lasing by a smooth crossover, the observed phase transition separates the biexponential phase from both lasing and an intermediate, oscillatory condensate regime. Our approach can be used to study a wide class of dissipative quantum phases in topological or lattice systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.