Abstract

Quantum Optics Our textbook understanding of quantum systems tends to come from modeling these systems isolated from the environment. However, an emerging focus is understanding how many-body quantum systems behave when interacting with their surroundings and how they subsequently become dissipative, or non-Hermitian, systems. Ozturk et al. formed a quantum condensate of light by trapping photons in an optical cavity, a system that is naturally dissipative. By altering the trapping conditions, they demonstrated that the system provides a powerful platform with which to explore the complex dynamics and phase transitions occurring in dissipative quantum systems. Science , this issue p. [88][1] [1]: /lookup/doi/10.1126/science.abe9869

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.