Abstract

In this paper, we present results from the analysis of a multicomponent VSP from a fractured gas reservoir in the Bluebell-Altamont Field, Utah. Our analysis is focused on frequency-dependent anisotropy. The four-component shear-wave data are first band-pass filtered into different frequency bands and then rotated to the natural coordinates so that the fast and slow shear-waves are effectively separated. We find that the polarisations of the fast shear-waves are almost constant over the whole depth interval, and show no apparent variation with frequency. In contrast, the time delays between the split shear-waves decrease as the frequency increases. A linear regression is then applied to fit the time-delay variations in the target and we find that the gradients of linear fits to time delays show a decrease as frequency increases. Finally, we apply a time-frequency analysis method based on the wavelet transform with a Morlet wavelet to the data. The variation of shear-wave time delays with frequency is highlighted in the time-delay and frequency spectra. We also discuss two mechanisms giving rise to dispersion and frequency-dependent anisotropy, which are likely to explain the observation. These are scattering of seismic waves by preferentially aligned inhomogeneneities, such as fractures or fine layers, and fluid flow in porous rocks with micro-cracks and macro-fractures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call