Abstract
Abstract : A finite state automaton is adopted as a model for Discrete Event Dynamic Systems (DEDS). Observations are assumed to be a subset of the event alphabet. Observability is defined as having perfect knowledge of the current state at points in time seperated by bounded numbers of transitions. A polynomial test for observability is given. It is shown that an observer may be constructed and implemented in polynomial time and space. A bound on the cardinality of the observer state space is also presented. A notion of resiliency is defined for observers, and a test for resilient observability and a procedure for the construction of a resilient observer are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.