Abstract

The Orion attitude navigation design is presented, together with justification of the choice of states in the filter and an analysis of the observability of its states while processing star tracker measurements. The analysis shows that when the gyroscope biases and scale factors drift at different rates and are modeled as first-order Gauss–Markov processes, the states are observable so long as the time constants are not the same for both sets of states. In addition, the inertial-measurement-unit-to-star-tracker misalignments are modeled as first-order Gauss–Markov processes and these states are estimated. These results are used to finalize the design of the attitude estimation algorithm and the attitude calibration maneuvers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.