Abstract

ABSTRACT The two-layer pile-rock porous breakwater consisting of the upper porous layer, middle porous layer placed over the bottom rigid layer (elevated bottom) is proposed as an active wave absorber for significant wave damping and wave trapping. The two-layer rock core is placed between the two thin porous barriers (piles), and the thin barriers/ piles are useful to reduce the wave force experienced by active two-layered breakwater. The eigenfunction expansion method is used to analyse the physical problem on considering the continuity in fluid velocity and pressure along with mode-coupling relation based on classical linearised potential flow theory. The developed analytical model is validated with the available results and then various hydrodynamic characteristics such as wave reflection, transmission, damping, wave forces on seaward, leeward barriers and wave force experienced by the vertical cliff are presented. The porosity of surface layer shows an effective role in reducing the harmonic oscillatory pattern in the hydrodynamic quantities, and the study suggests the higher surface layer porosity as compared with bottom layer porosity for optimal wave damping.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call