Abstract
We investigate the influence of a second electron component on oblique dust ion acoustic solitary waves in a five component plasma consisting of positively and negatively charged dust, hydrogen ions, and hotter and colder electrons. Of these, the heavier dust and colder photo-electrons are of cometary origin while the other two are of solar origin; electron components are described by kappa distributions. The K-dV equation is derived, and different attributes of the soliton such as amplitude and width are plotted for parameters relevant to comet Halley. We find that the second electron component has a profound influence on the solitary wave, decreasing both its amplitude and width. The normalized hydrogen density strongly influences the solitary wave by decreasing its width; the amplitude of the solitary wave, however, increases with increasing solar electron temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.