Abstract
A head-on collision between two dust ion acoustic solitary waves (DIASWs) travelling in the opposite direction in a weakly relativistic plasma composed of four distinct particle populations, namely, weakly relativistic ion fluid, superthermal electrons as well as positrons, and immobile dust, is investigated. By employing extended Poincaré-Lighthill-Kuo method, two Korteweg-de Vries (KdV) equations are derived. The analytical phase shift after a head-on collision of two dust ion acoustic (DIA) solitary waves is also obtained. The combined effects of relativistic factor (β), electron to positron temperature ratio (α), ion to electron temperature ratio (σ), positron to electron density ratio (P), dust density ratio (d), and superthermality of electrons as well as positrons (via κ) on the phase shifts are numerically studied. All these physical parameters have also changed the potential amplitude and the width of colliding solitary waves. It is found that the presence of superthermal electrons as well as positrons and dust grains has emphatic influence on the phase shifts and potential pulse profiles of compressive DIA solitons. Our results are general and may be helpful in understanding a head-on collision between two DIASWs in astrophysical and laboratory plasmas, especially the interaction of pulsar relativistic winds with supernova ejecta that produces the superthermal particles and relativistic ions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.