Abstract

This work studies fractional temporal evolution of oblique resonant optical solitons in (3+1)-dimensions with Kerr- and parabolic-law nonlinearities. The generalized exp(−Φ(ξ))-expansion method along with the Khalil's conformable fractional derivatives is implemented to locate several forms of oblique resonant solitons. It is observed that obliqueness significantly modified resonant wave dynamics. The obtained results are very useful for understanding the dynamics of obliquely propagating resonant optical solitons and optical bullets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.