Abstract
The immediate early gene neuronal activity-regulated pentraxin (NARP) is an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) binding protein that is specifically enriched at excitatory synapses onto fast-spiking parvalbumin-positive interneurons (FS [PV] INs). Here, we show that transgenic deletion of NARP decreases the number of excitatory synaptic inputs onto FS (PV) INs and reduces net excitatory synaptic drive onto FS (PV) INs. Accordingly, the visual cortex of NARP(-/-) mice is hyperexcitable and unable to express ocular dominance plasticity, although many aspects of visual function are unimpaired. Importantly, the number and strength of inhibitory synaptic contacts from FS (PV) INs onto principle neurons in the visual cortex is normal in NARP(-/-) mice, and enhancement of thisoutput recovers the expression of experience-dependent synaptic plasticity. Thus the recruitment of inhibition from FS (PV) INs plays a central role in enabling the critical period for ocular dominance plasticity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.