Abstract

The origin of specific insect genotypes that enable efficient use of agricultural plants is an important subject not only in applied fields like pest control and management but also in basic disciplines like evolutionary biology. Conventionally, it has been presupposed that such pest-related ecological traits are attributed to genes encoded in the insect genomes. Here, however, we report that pest status of an insect is principally determined by symbiont genotype rather than by insect genotype. A pest stinkbug species, Megacopta punctatissima, performed well on crop legumes, while a closely related non-pest species, Megacopta cribraria, suffered low egg hatch rate on the plants. When their obligate gut symbiotic bacteria were experimentally exchanged between the species, their performance on the crop legumes was, strikingly, completely reversed: the pest species suffered low egg hatch rate, whereas the non-pest species restored normal egg hatch rate and showed good performance. The low egg hatch rates were attributed to nymphal mortality before or upon hatching, which were associated with the symbiont from the non-pest stinkbug irrespective of the host insect species. Our finding sheds new light on the evolutionary origin of insect pests, potentially leading to novel approaches to pest control and management.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.