Abstract

Adult mortality and low egg hatch rate were observed among American alligators Alligator mississippiensis in Lake Griffin, Florida, between 1998 and 2003. Previous studies show that the alligator mortality is due to neurological impairment associated with thiamine (vitamin Bt) deficiency. This study determined the rate of thiaminase activity in gizzard shad Dorosoma cepedianum, a fish often eaten by alligators, and examined the thiamine status of captive adult alligators fed only gizzard shad. We found that the thiaminase activity of gizzard shad in Lake Griffin is 16,409 +/- 2,121 pmol/g/min (mean +/- 2SEs). This high rate of thiaminase activity was present in most months and across a wide range of shad sizes. Seven alligators were captured in the wild from Lake Griffin and Lake Woodruff, held in captivity, and fed gizzard shad. We monitored blood and muscle thiamine levels throughout the experiment and liver thiamine at the end. Over a period of 6-12 months, all of the alligators maintained weight but blood and muscle thiamine levels decreased to 25-50% of the original (healthy) values. Three animals with the greatest reduction in thiamine died, demonstrating mobility impairment and neural histopathology similar to those seen in wild alligators in Lake Griffin. Two alligators were fed shad for 10 months but then treated with thiamine. These animals showed a reduction in thiamine while eating shad, but treatment restored their thiamine levels to the initial values, which were comparable to those of normal wild Lake Griffin alligators. We demonstrated that thiamine deficiency can be induced by a diet of gizzard shad and cause neurological signs and death in alligators in captivity. We conclude that the thiaminase activity in gizzard shad is high enough to cause thiamine deficiency in wild alligators when shad are a major part of their diet.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.