Abstract

We investigate what can be concluded about a quantum system when sequential quantum measurements of its observable – a prominent example of the so-called quantum stochastic process – fulfill the Kolmogorov consistency condition and thus appear to an observer as a sampling of a classical trajectory. We identify a set of physical conditions imposed on the system dynamics, that when satisfied, lead to the aforementioned trajectory interpretation of the measurement results. We then show that when another quantum system is coupled to the observable, the operator representing it can be replaced by external noise. Crucially, the realizations of this surrogate (classical) stochastic process follow the same trajectories as those measured by the observer. Therefore, it can be said that the trajectory interpretation suggested by the Kolmogorov consistent measurements also applies in contexts other than sequential measurements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.