Abstract

A general theory of quantum stochastic processes was formulated by Accardi, Frigerio and Lewis in 1982 within the operator-algebraic framework of quantum probability theory, as a non-commutative extension of the Kolmogorovian classical stochastic processes. More recently, studies on non-Markovian quantum processes have led to the discrete-time process tensor formalism in the Schr\"{o}dinger picture to describe the outcomes of sequential interventions on open quantum systems. However, there has been no treatment of the relationship of the process tensor formalism to the quantum probabilistic theory of quantum stochastic processes. This paper gives an exposition of quantum stochastic processes and the process tensor and the relationship between them. In particular, it is shown how the latter emerges from the former via extended correlation kernels incorporating ancillas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.