Abstract

Neurophysiological techniques help in diagnosis, prognosis and treatment of chronic pain, and are particularly useful to determine its neuropathic origin. According to current standards, the diagnosis of definite neuropathic pain (NP) needs objective confirmation of a lesion or disease of somatosensory systems, which can be provided by neurophysiological testing. Lesions causing NP mostly concern the pain-temperature pathways, and therefore neurophysiological procedures allowing the specific testing of these pathways (i.e., A-delta and C-fibres, spino-thalamo-cortical tracts) are essential for objective diagnosis. Different techniques to stimulate selectively pain-temperature pathways are discussed. Of these, laser-evoked potentials (LEPs) appear as the easiest and most reliable neurophysiological method of assessing nociceptive function, and their coupling with autonomic responses (e.g., galvanic skin response) and psychophysics (quantitative sensory testing - QST) can still enhance their diagnostic yield. Neurophysiological techniques not exploring specifically nociception, such as standard nerve conduction velocities (NCV) and SEPs to non-noxious stimulation, should be associated to the exploration of nociceptive systems, not only because both may be simultaneously affected to different degrees, but also because some specific painful symptoms, such as paroxysmal discharges, may depend on specific alteration of highly myelinated A-beta fibres. The choice of techniques is determined after anamnesis and clinical exam, and tries to answer a number of questions: (a) is the pain-related to injury of somatosensory pathways?; (b) to what extent are different subsystems affected?; (c) are mechanisms and lesion site in accordance with imaging data?; (d) are results of use for diagnostic or therapeutic follow-up? Neuropathic pain (NP) affects more than 15 million people in Western countries, and its belated diagnosis leads to insufficient or delayed therapy. The use of neurofunctional approaches to obtain a "physiological photograph" of somatosensory function is therefore highly relevant, as it yields significant clues about the type and mechanisms of pain, thus prompting rapid and optimised therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call