Abstract
ObjectiveThis study aimed to explore the relationships between potential neurophysiological biomarkers and upper limb motor function recovery in stroke patients, specifically focusing on combining two neurophysiological markers: electroencephalography (EEG) and transcranial magnetic stimulation (TMS). MethodsThis cross-sectional study analyzed neurophysiological, clinical, and demographical data from 102 stroke patients from the DEFINE cohort. We searched for correlations of EEG and TMS measurements combined to build a prediction model for upper limb motor functionality, assessed by five outcomes, across five assessments: Fugl-Meyer Assessment (FMA), Handgrip Strength Test (HST), Finger Tapping Test (FTT), Nine-Hole Peg Test (9HPT), and Pinch Strength Test (PST). ResultsOur multivariate models agreed on a specific neural signature: higher EEG Theta/Alpha ratio in the frontal region of the lesioned hemisphere is associated with poorer motor outcomes, while increased MEP amplitude in the non-lesioned hemisphere correlates with improved motor function. These relationships are held across all five motor assessments, suggesting the potential of these neurophysiological measures as recovery biomarkers. ConclusionOur findings indicate a potential neural signature of brain compensation in which lower frequencies of EEG power are increased in the lesioned hemisphere, and lower corticospinal excitability is also increased in the non-lesioned hemisphere. We discuss the meaning of these findings in the context of motor recovery in stroke.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have