Abstract

AbstractThe design of an object transportation system exploiting the bending behavior of surface‐assembled diarylethene crystals is reported. A photoactuated smart surface based on this system can transport polystyrene beads to a desired area depending on the direction of the incident light. Two main challenges were addressed to accomplish directional motion along a surface: first, the preparation of crystals whose bending behavior depends on the direction of incident light; second, the preparation of a film on which these photochromic crystal plates are aligned. Nuclei generation and nuclear growth engineering were achieved by using a roughness‐controlled dotted microstructured substrate. This system demonstrates how to achieve a mechanical function as shown by remote‐controlled motion along a surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.