Abstract

The optical reorientation process of the azo-dye doped liquid crystals (LCs) is studied and the dependence of the enhancement factor on the incident light direction is explained. By analysing the relation between the order parameter and the cis isomer concentration in the azo-dye doped LC system, an analytical expression that describes the dependence of the order parameters on the direction of the incident light is obtained. It is found that, since the order parameters of the guest–host LC system depend on the direction of the incident light, the intermolecular orientational interaction potentials are also related with the incident light direction. In order to describe the interaction of the cis isomer with the liquid crystalline molecules, a revised Maier–Saupe potential expression that allows for a higher-order interaction is used. A microscopic formula of the enhancement factor for the azo-dye doped LC system is derived on the basis of a simplified two-level model. From the microscopic formula, the mechanism behind the dependence of the enhancement factor on the incident direction of light is revealed. The comparison of our computational results with the existent experimental data verified our enhancement factor's microscopic form.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call