Abstract
Remote limb conditioning (RLC), performed by intermittent interruption of blood flow to a limb, triggers endogenous tolerance mechanisms and improves stroke outcomes. The underlying mechanism for the protective effect involves a shift of circulating monocytes to a Ly6CHigh proinflammatory subset in normal metabolic conditions. The current study investigates the effect of RLC on stroke outcomes in subjects with obesity, a vascular comorbidity. Compared to lean mice, obese stroke mice displayed significantly higher circulating monocytes (monocytosis), increased CD45High monocytes/macrophages infiltration to the injured brain, worse acute outcomes, and delayed recovery. Unlike lean mice, obese mice with RLC at 2 hours post-stroke failed to shift circulating monocytes to pro-inflammatory status and nullified RLC-induced functional benefit. The absence of the monocyte shift was also observed in splenocytes incubated with RLC serum from obese mice, while the shift was observed in the cultures with RLC serum from lean mice. These results showed that the alteration of monocytosis and subsets underlies negating RLC benefits in obese mice and suggest careful considerations of comorbidities at the time of RLC application for stroke therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.