Abstract

OBJECTIVEHaptoglobin (Hp) is upregulated in both inflammation and obesity. The low chronic inflammatory state, caused by massive adipose tissue macrophage (ATM) infiltration found in obesity, and low adiponectin have been implicated in the development of insulin resistance and hepatosteatosis. The aim of this work was to investigate whether and how Hp interferes with the onset of obesity-associated complications.RESEARCH DESIGN AND METHODSHp-null (Hp−/−) and wild-type (WT) mice were metabolically profiled under chow-food diet (CFD) and high-fat diet (HFD) feeding by assessing physical parameters, glucose tolerance, insulin sensitivity, insulin response to glucose load, liver triglyceride content, plasma levels of leptin, insulin, glucose, and adiponectin. ATM content was evaluated by using immunohistochemistry (anti-F4/80 antibody). Adiponectin expression was measured in Hp-treated, cultured 3T3-L1 and human adipocytes.RESULTSNo genotype-related difference was found in CFD animals. HFD-Hp−/− mice revealed significantly higher glucose tolerance, insulin sensitivity, glucose-stimulated insulin secretion, and adiponectin expression and reduced hepatomegaly/steatosis compared with HFD-WT mice. White adipose tissue (WAT) of HFD-Hp−/− mice showed higher activation of insulin signaling cascade, lower ATM, and higher adiponectin expression. Hp was able to inhibit adiponectin expression in cultured adipocytes.CONCLUSIONSWe demonstrated that in the absence of Hp, obesity-associated insulin resistance and hepatosteatosis are attenuated, which is associated with reduced ATM content, increased plasma adiponectin, and higher WAT insulin sensitivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.