Abstract
Cell spreading is an integral component of insect hemocytic immune reactions to infections and invasions. Cell spreading is accomplished by cytoskeleton rearrangement, which is activated by three major immune mediators, biogenic monoamines, plasmatocyte-spreading peptide (PSP), and eicosanoids, particularly prostaglandin E2 (PGE2). However, little is known about how these immune mediators activate hemocyte spreading at the intra-cellular level. A small G protein, Rac1, acts in cytoskeleton arrangements in mammalian cells. Based on this information, we identified a Rac1 transcript (SeRac1) in hemocytes prepared from Spodoptera exigua. SeRac1 was expressed in most developmental stages and in the two main immunity-conferring tissues, hemocytes and fat body, in larvae. In response to bacterial challenge, its expression was up-regulated by >37-fold at 2 h post-injection and returned to a basal level about 2 h later. Silencing SeRac1 expression inhibited hemocyte spreading in response to three immune mediators, octopamine, 5-hydroxytryptamine, and PSP. Addition of PGE2 to SeRac1-silenced larvae rescued the influence of these three mediators on hemocyte spreading. These compounds also increased phospholipase A2 activity via SeRac1, which leads to prostaglandin biosynthesis. We infer that SeRac1 transduces OA, 5-HT, and PSP signaling via activating biosynthesis of prostaglandins and possibly other eicosanoids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.