Abstract

Hemocyte-spreading behavior is required for expressing a cellular immune response, nodulation, which clears the vast majority of invading microbes from circulation. The nodulation response is completed by a layer of plasmatocytes, which spread over the nodule and initiate a malanization process leading to darkened nodules. Plasmatocyte-spreading peptide (PSP), the first reported insect cytokine, is responsible for mediating the spreading and attachment of some subclasses of plasmatocytes to nodules. Prostaglandins (PGs), one group of eicosanoids formed from arachidonic acid (AA), also mediate plasmatocyte spreading (PS), although the potential interactions between the PSP and PG signal transduction pathways have not been investigated. We tested our hypothesis that PSP acts via biosynthesis of eicosanoids, specifically PGs, in the beet armyworm, Spodoptera exigua. In this study, we report that (1) PSP and PGE(2) independently stimulated Ca(++)-dependent PS, (2) inhibitors of PG biosynthesis reversibly blocked PS, (3) dsRNA silencing the gene encoding proPSP blocked PS, which was rescued by PSP and by AA, (4) PSP-stimulated PS was reversibly impaired by inhibitors of PG biosynthesis, and (5) the inhibitor-impaired spreading was rescued by AA. Taken together, these points strongly support our model showing that PSP acts via a plasmatocyte-surface receptor, which stimulates biosynthesis of the PGs responsible for mediating plasmatocytes spreading.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.