Abstract

Increasingly prominent pollution levels and strong regional characteristics of O3, especially in economically developed eastern China, called for a regional cooperation strategy based on transport quantification. This study adopted the complex networks to construct the O3 Transport Network (OTN) to explore characteristics in eastern China in the summer of 2017 and 2021, whose results were afterward verified with spatial source apportionment results simulated with WRF-CMAQ-ISAM. As OTN suggested, O3 transport showed stronger and faster characteristics in eastern China in 2021 than in 2017, judging from changes in the network density, number of connections, transport ranges, and transport paths. Among all cluster communities, inland Shandong was the most important O3 transport hub, the Central Community was the largest community, and the Southern Community showed the closest inter-city transport relationships. In- and out-weighted degrees in OTN showed relatively superior consistency with the transport matrix obtained with WRF-CMAQ-ISAM, and can be explained by wind fields. Generally, O3 pollution in the whole eastern China showed more frequent intra-regional transport and more strengthened inter-city correlations in 2021 than in 2017, meanwhile, northerly and southerly cities exhibited strengthening and weakening trends in O3 transport, respectively. Despite the completely different principles of complex networks and air quality models, their results were mutually verifiable. This study presented a comprehensive understanding of O3 transport in eastern China for further formulation of regional collaborative strategies and provided the methodological verification for applying complex networks in the atmospheric environment field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.