Abstract
Giardia intestinalis is the most frequent protozoan agent of intestinal diseases worldwide. Though commonly regarded as an anaerobic pathogen, it preferentially colonizes the fairly oxygen-rich mucosa of the proximal small intestine. Therefore, when testing new potential antigiardial drugs, O2 should be taken into account, since it also reduces the efficacy of metronidazole, the gold standard drug against giardiasis. In this study, 46 novel chalcones were synthesized by microwave-assisted Claisen-Schmidt condensation, purified, characterized by high-resolution mass spectrometry, (1)H and (13)C nuclear magnetic resonance, and infrared spectroscopy, and tested for their toxicity against G. intestinalis under standard anaerobic conditions. As a novel approach, compounds showing antigiardial activity under anaerobiosis were also assayed under microaerobic conditions, and their selectivity against parasitic cells was assessed in a counterscreen on human epithelial colorectal adenocarcinoma cells. Among the tested compounds, three [30(a), 31(e), and 33] were more effective in the presence of O2 than under anaerobic conditions and killed the parasite 2 to 4 times more efficiently than metronidazole under anaerobiosis. Two of them [30(a) and 31(e)] proved to be selective against parasitic cells, thus representing potential candidates for the design of novel antigiardial drugs. This study highlights the importance of testing new potential antigiardial agents not only under anaerobic conditions but also at low, more physiological O2 concentrations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.