Abstract
Large time-stepping is important for efficient long-time simulations of deterministic and stochastic Hamiltonian dynamical systems. Conventional structure-preserving integrators, while being successful for generic systems, have limited tolerance to time step size due to stability and accuracy constraints. We propose to use data to innovate classical integrators so that they can be adaptive to large time-stepping and are tailored to each specific system. In particular, we introduce NySALT, Nyström-type inference-based schemes adaptive to large time-stepping. The NySALT has optimal parameters for each time step learnt from data by minimizing the one-step prediction error. Thus, it is tailored for each time step size and the specific system to achieve optimal performance and tolerate large time-stepping in an adaptive fashion. We prove and numerically verify the convergence of the estimators as data size increases. Furthermore, analysis and numerical tests on the deterministic and stochastic Fermi-Pasta-Ulam (FPU) models show that NySALT enlarges the maximal admissible step size of linear stability, and quadruples the time step size of the Störmer–Verlet and the BAOAB when maintaining similar levels of accuracy.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have