Abstract

The blood–brain barrier regulates the transport of molecules that convey global energetic status to the feeding circuitry within the hypothalamus. Capillaries within the median eminence (ME) and tight junctions between tanycytes lining the third ventricle (3V) are critical components of this barrier. Herein, we tested the hypothesis that altering the plane of nutrition results in the structural reorganization of tanycytes, tight junctions, and capillary structure within the medial basal hypothalamus. Proopiomelanocortin (POMC) neuronal content within the arcuate nucleus of the hypothalamus (ARC) was also assessed to test whether reduced nutritional status improved access of nutrients to the ARC, while decreasing the access of nutrients of overfed animals. Multiparous, nongestating ewes were stratified by weight and randomly assigned to dietary treatments offered for 75 d: 200% of dietary recommendations (overfed), 100% of dietary recommendations (control), or 60% of dietary recommendations (underfed). The number of POMC-expressing neurons within the ARC was increased (P ≤ 0.002) in underfed ewes. Overfeeding increased (P ≤ 0.01) tanycyte cellular process penetration and density compared with control and underfeeding as assessed using vimentin immunostaining. Immunostaining of tight junctions along the wall of the 3V did not differ (P = 0.32) between treatments. No differences were observed in capillary density (P = 0.21) or classification (P ≥ 0.47) within the ME. These results implicate that changes within the satiety center and morphology of tanycytes within the ARC occur as an adaptation to nutrient availability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.