Abstract
The invasive saltmarsh grass Spartina is widely considered a threat to the health of coastal ecosystems in south-eastern Australia, however, the ecological impacts of Spartina on estuarine communities are poorly understood. The largest infestation of Spartina in Victoria occurs in Anderson Inlet. The relative contribution of Spartina, vs. non-invasive autotrophs, to the nutrition of an estuarine fish, Macquaria colonorum was assessed using stable isotopes and gut content analyses. The δ 13C and δ 15N compositions of autotrophs and M. colonorum varied spatially across the study area. Based on gut content analyses, adults and juveniles were between two and three trophic levels above autotrophs. Isosource modelling of δ 13C signatures, suggested several autotrophs contributed to the nutrition of M. colonorum with a combination of seagrass and Spartina likely important contributors, particularly for adults. Isotopic sulphur was subsequently used to distinguish between seagrass and Spartina. Modelling of δ 13C and δ 34S signatures of M. colonorum and a subset of autotrophs again indicated a combination of seagrass and Spartina was likely a major contributor to nutritional support of M. colonorum. Given the limited areal extent of seagrass within Anderson Inlet, current Spartina eradication programs may compromise the nutritional support of M. colonorum.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have