Abstract

The discharge of untreated bathroom greywater directly into drain is a most common practice in the rural area. The uncontrolled discharge of greywater from the village houses escalates the pollution among Malaysian river and provide insanitary environment through mosquito and flies breeding grounds. Therefore, the current work aimed to investigate the potential of Botryococcus sp. for removing total nitrogen (TN), total phosphorus (TP) and total organic carbon (TOC) from artificial bathroom greywater and to determine the bio-kinetic removal rate for these parameters. The artificial bathroom greywater was prepared by using regular brands used in the community, the bathroom greywater quality was tested for BOD, COD, SS, pH, and Turbidity. The removal process was conducted in the lab scale with 108 cell mL-1 of Botryococcus sp. The removal of TN, TP and TOC was measured in interval of 3, 5 and 7 days. The results deduced that Botryococcus sp. removed 51.5% of TN, 49.5% of TP and 42.6% of TOC. Moreover, the bio-kinetic model studies, revealed that the specific removal rate of TN, TP and TOC have a significant relationship with initial concentration in the artificial greywater (R2 = 0.63, 0.95 and 0.95 respectively). The kinetic coefficient of greywater parameters removed by Botryococcus sp. was determined as k=0.357 mg TN 1 log10 cell mL-1 d-1 and km=31.33 mg L-1 (R2=0.73), k=4.58 mg TP 1 log10 cell mL-1 d-1 and km=283.86 mg L-1 (R2=0.95), k=7.9 mg TOC 1 log10 cell mL-1 d-1 and km=322.32 mg L-1 (R2=0.97). The bio-kinetic model indicated that more than 90% of TN, TP and TOC was taken place as a response for Botryococcus sp.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call