Abstract

Understanding ecosystem processes such as litter decomposition in response to dramatic land-use change is critical for modeling and predicting carbon (C) cycles. However, the patterns of litter decomposition along with long-term secondary succession (over 100 years) are not well reported, especially concerning nutrient limitations on litter decomposition. To clarify the response of litter decomposition to changes in soil nutrient availability, we conducted four incubation experiments involving soil and litter and nutrient addition from different successional stages and investigated the changes in microbial respiration and litter mass loss. Our results revealed that microbial respiration increased with succession without any litter addition (1.19~1.73 mg C g−1 soil), and litter addition significantly promoted microbial respiration (16.5~72.9%), especially in the early successional stage (grassland and shrubland). The decomposition rate of the same litter decreased with succession. In addition, nitrogen (N) and phosphorus (P) addition showed significant effects on litter decomposition and microbial respiration; P addition promoted litter decomposition (2.4~15.3%) and microbial respiration (10.1~34.5%) in all successional stages, while N addition promoted litter decomposition (4.0~10.3%) and microbial respiration (5.4~27.2%) in all except the last stage of succession, which showed a negative effect on litter decomposition (− 7.5%) and microbial respiration (− 6.1%), indicating possible N saturation of litter decomposition and microbial respiration. This work highlights that soil nutrient availability and successional stages need to be taken into account to predict the changes to litter decomposition in response to global changes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call