Abstract
It was hypothesized that litter with higher N concentration would decompose faster than that with lower N concentration and that increased soil nutrient availability would stimulate litter decomposition. To examine the interspecific differences in decomposition rate of leaf litter in relation with differences in litter chemistry and soil nutrient availability, senescent leaves of four species Pennisetum flaccidum, Artemisia scoparia, Chenopodium acuminatum and Cannabis sativa, and soil samples with different fertilization treatments (no fertilization, N, P, and N + P fertilizations, respectively) were collected from a sandy grassland in Northeast China and incubated under laboratory conditions. The decomposition rate of leaf litter was determined by measuring the CO 2 emission during decomposition of litter. We found remarkable interspecific differences in leaf decomposition rates. Moreover, rates of litter decomposition at different incubation stages were correlated with different litter quality indices. The rate of litter decomposition was positively correlated with initial litter N concentration in the initial stage of the incubation, whereas it was negatively correlated with litter N and P concentrations in the late stage. Responses of litter decomposition to soil nutrient availability differed among species. Our results suggest that both indirect changes in litter quality through shifts of species composition/dominance and direct changes in soil nutrient availability under nutrient addition conditions could affect litter decomposition and consequently C and nutrient cycling of grassland ecosystems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.