Abstract
In the present study, based on the higher-order shear deformation plate theory, the unified numerical formulation is developed in variational framework to investigate the thermal buckling of different shapes of functionally graded carbon nanotube reinforced composite (FG-CNTRC) plates. Since the thermal environment has considerable effects on the material properties of carbon nanotubes (CNTs), the temperature-dependent (TD) thermo-mechanical material properties are taken into account. In order to present the governing equations, the quadratic form of the energy functional of the plate structure is derived and its discretized counterparts are presented employing the variational differential quadrature (VDQ) approach. The discretized equations of motion are finally obtained based on Hamilton's principle. In order to convenient application of differential quadrature numerical operators in irregular physical domain, the mapping procedure is considered in accordance to the conventional finite element formulation. Some comparison and convergence studies are performed to show validity and efficiency of the proposed approach. A wide range of numerical results are also reported to analyze the thermal buckling behavior of different shaped FG-CNTRC plates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.