Abstract

The buckling analysis of thick composite annular sector plates reinforced with functionally graded carbon-nanotubes (CNTs) is presented under in-plane and shear loadings based on the higher-order shear deformation theory. It is considered that the plate is resting on the Pasternak-type elastic foundation. The overall material properties of functionally graded carbon nanotube-reinforced composites (FG-CNTRCs) are estimated through the micromechanical model. The governing equations are derived on the basis of the higher-order shear deformation plate theory, and the quadratic form of the energy functional of the system is presented. An efficient numerical method is presented in the context of variational formulation to obtain the discretized version of stability equations. The validation of the present study is demonstrated through comparisons with the results available in the literature and then comprehensive numerical results are given to investigate the impacts of model parameters on the stability of CNT-reinforced composite annular sector plates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call