Abstract

During the operation of thermal power plant systems, severe challenges to the quality and safety of the heat supply arise owing to the effects of peak regulation. Steam ejectors, widely employed in the district heating sector, often exhibit poorer performance under off-design conditions as a result of their fixed structure. This study analyzes the effects of varying plugging rate, primary pressure, and induced pressure on the performance of adjustable steam ejectors. As the plugging rate increases, the mass flow rate of the primary fluid decrease, potentially falling below 32%, and that of the induced fluid initially experiences a minor increase, followed by a rapid decrease. Concurrently, the critical back pressure also decreases with an increase in the plugging rate, potentially falling by up to 65%. By contrast, the entrainment ratio surges with increasing plugging rate, with the maximum increase reaching up to 4.75 times. Under the same primary steam pressure and induced steam pressure, there exists an optimal entrainment ratio. Furthermore, both the critical back pressure and the optimal entrainment ratio increase as the primary steam pressure and induced steam pressure increase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call