Abstract

In this study, thermal hydraulic behaviors in a 19-pin bundle fuel assembly with nonuniform wire pitches is investigated by combing CFD with the Kriging method. To optimize the design, two geometric variables—the ratio of inner pitch to reference pitch (Pi/P) and the ratio of outer pitch to reference pitch (Po/P)—are selected, and the design space is sampled using Latin Hypercube Sampling (LHS). The sampled points are then subjected to CFD analysis. Convergence is considered achieved when the residuals of all variables are below 1e-5. The optimization problem aims to minimize the objective function, which is a linear combination of the cross-sectional temperature difference and friction factor. Sequential Quadratic Programming (SQP) is employed to search for the optimal point using a constructed meta-model. When compared to the reference shape, the optimal shape exhibits higher axial velocity in the inner channel, higher average temperature, smaller temperature difference at the outlet section, and reduced pressure drop in the fuel assembly. The Kriging model accurately predicts the cross-sectional temperature difference and friction coefficient for the optimal shape, consistent with the CFD calculation results. This confirms the accuracy and feasibility of the Kriging model in fuel assembly optimization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.